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Abstract: The electromagnetic and gravitational quasinormal spectra of (3 + 1)-

dimensional plane-symmetric anti-de Sitter black holes are analyzed in the context of the

AdS/CFT correspondence. According to such a correspondence, the electromagnetic and

gravitational quasinormal frequencies of these black holes are associated respectively to the

poles of retarded correlation functions of R-symmetry currents and stress-energy tensor in

the holographically dual conformal field theory: the (2+1)-dimensional N = 8 super-Yang-

Mills theory. The connection between AdS black holes and the corresponding field theory

is used to unambiguously fix the boundary conditions that enter the proper definition of

quasinormal modes. Such a procedure also helps one to decide, among the various different

possibilities, what are the appropriate gauge-invariant quantities one should use in order

to correctly describe the electromagnetic and gravitational blackhole perturbations. These

choices imply in different dispersion relations for the quasinormal modes when compared

to some of the results in the literature. In particular, the long-distance, low-frequency limit

of dispersion relations presents the characteristic hydrodynamic behavior of a conformal

field theory with the presence of diffusion, shear, and sound wave modes. There is also

a family of purely damped electromagnetic modes which tend to the bosonic Matsubara

frequencies in the long-wavelength regime.
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1. Introduction

1.1 Motivations and overview

Theoretical studies on black holes in asymptotically anti-de Sitter spacetimes have at-

tracted substantial attention since the advent of the anti-de Sitter/conformal field theory

(AdS/CFT) correspondence [1 – 3]. In particular, the quasinormal-mode (QNM) spectra

of various types of asymptotically AdS black holes have been analyzed since then (see

refs. [4 – 30] for a sample). According to the AdS/CFT correspondence, an asymptotically

AdS black hole is, in the CFT side, associated to a system in thermal equilibrium whose

temperature is the Hawking temperature of the black hole. In such a context, blackhole

perturbations correspond to small deviations from equilibrium of the CFT thermal system,

and the characteristic damping time of perturbations, which is given by the inverse of the

imaginary part of the fundamental QNM frequency, is a measure of the dynamical timescale

of approach to thermal equilibrium of the corresponding conformal field theory [31].

The literature on QNM of AdS black holes includes studies taking into account a variety

of different aspects such as the topology of the event horizon, the number of dimensions of

the spacetime, the particular type of perturbation fields considered, and also the special pa-

rameters which characterize each different black hole itself. Each one of these variant prop-

erties reflects on the dual CFT. For instance, assuming the (3+1)-dimensional AdS space-

time contains a plane-symmetric black hole, then the holographic field theory is defined

over the (2+1)-dimensional Minkowski spacetime, which is the conformal boundary of the

bulk AdS spacetime. Moreover, different blackhole parameters characterize different dual

plasmas in the CFT side, and different equilibrium states of such systems at the boundary.

An important issue in the study of the vibrational modes of black holes is the choice of

appropriate boundary conditions. In the case of asymptotically flat spacetimes, the solu-

tions to the wave equations governing linear perturbations are, near the boundaries, given

by plane wave functions. QNM are then defined as solutions which satisfy physically well

motivated boundary conditions, namely, purely ingoing waves at the horizon and purely

outgoing waves at infinity (see refs. [32, 33] for reviews). For anti-de Sitter black holes, on

the other hand, the condition at the future horizon is the same as for asymptotically flat

spacetimes, but now there are no natural conditions to be imposed on the perturbation vari-

ables at the AdS infinity. These can be Dirichlet, Neumann, or Robin boundary conditions,

depending on whether it is required that the field perturbations, their derivatives or a com-

bination of both vanish at the AdS boundary, respectively. In the study of the evolution of

a massless scalar field in (3+1)-, (4+1)-, and (6+1)-dimensional Schwarzschild-AdS space-

times, Horowitz and Hubeny [31] computed the corresponding quasinormal-mode spectra

by imposing Dirichlet boundary conditions on such a field at infinity. This option was well

justified in that context, since by writing the radial part of the Klein-Gordon equation in a

Schrödinger-like form, the resulting effective potential diverges at that boundary. The same

boundary condition was used to study massless scalar and electromagnetic perturbations

of (2 + 1)-dimensional Bañados-Teitelboim-Zanelli (BTZ) black holes [34]. For BTZ black

holes, an analytical closed form for the quasinormal frequencies was derived [35], and it

was verified that the quasinormal frequencies correspond exactly to the poles of retarded
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correlation functions in the dual (1 + 1)-dimensional CFT [36]. It was also suggested in

ref. [37] that the relation between quasinormal modes and singularities of correlation func-

tions should also hold for scalar fields in higher-dimensions, as far as the frequencies are

computed by imposing Dirichlet boundary conditions on such fields at AdS infinity.

In the meantime, two fundamental difficulties arise when considering gravitational

and/or electromagnetic perturbations of AdS black holes, particularly in higher dimensional

spacetimes. The first problem is related to the arbitrariness in the choice of gauge-invariant

perturbation fields. In fact, there is an infinity of gauge-invariant combinations of metric

(or vector potential) fluctuations that can be used as fundamental variables governing

the gravitational (or electromagnetic) perturbations. The second problem is related to

the ambiguity in defining appropriate boundary conditions for the quasinormal modes.

A traditional way to face such arbitrariness is opting for master variables that lead to

equations generalizing those for perturbations in asymptotically flat spacetimes. That is to

say, variables are chosen in such a way to put the radial part of the fundamental equations

into a Schrödinger-like form. From now on, the corresponding master variables shall be

called the Regge-Wheeler-Zerilli (RWZ) variables.1 With such a choice of variables, it

was investigated gravitational and/or electromagnetic perturbations of the Schwarzschild-

AdS [38, 41 – 46], Reissner-Nordström-AdS [47 – 49], and Kerr-AdS [50] black holes, as

well as the perturbations of black holes with non-spherical topologies [51, 52], including

the plane-symmetric ones [53 – 55]. Analogously to the massless scalar field case, in all

of these works the quasinormal modes were computed by imposing Dirichlet boundary

conditions on the master fields at infinity. Alternative boundary conditions for the same

Regge-Wheeler-Zerilli variables have been discussed in refs. [56, 57].

A different route was taken by Núñez and Starinets [58], who defined the quasinormal

frequencies of a perturbation in an asymptotically AdS spacetime as “the locations in the

complex frequency plane of the poles of the retarded correlator of the operators dual to

that perturbation”. To compute the real-time correlation functions, they suggested using

the Lorentzian AdS/CFT prescription of refs. [37, 59]. The quasinormal-mode definition

supplied by Núñez and Starinets was explored in ref. [60], where a new set of fundamental

variables was introduced to study electromagnetic and gravitational perturbations of (4 +

1)-dimensional plane-symmetric black holes (or black branes, for short). It was shown

there that the imposition of Dirichlet boundary conditions on such a new set of gauge-

invariant variables at infinity leads exactly to the quasinormal frequencies associated to

the corresponding black branes. In the present work these kind of fundamental variables

shall be called the Kovtun-Starinets (KS) variables.

An important consequence of the Núñez-Starinets approach [58] is that the resulting

quasinormal-mode spectra present a set of dispersion relations, here called hydrodynamic

QNM, that behave like diffusion, shear, and sound wave modes in the long-wavelength, low-

frequency limit [60]. These results are totally consistent with what is expected from the

CFT point of view, and they provide a non-trivial test of the AdS/CFT correspondence. It

1In the first study of gravitational QNM in AdS spacetimes, Cardoso and Lemos [38] used the same

kind of variables as the early works in asymptotically flat spacetimes by Regge and Wheeler [39], and by

Zerilli [40].
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is also worth noticing that neither the electromagnetic diffusion mode nor the gravitational

sound wave mode are obtained by imposing Dirichlet boundary conditions on the RWZ

master variables. For Schwarzschild-AdS and topological-AdS (3 + 1)-dimensional black

holes, it was only possible to obtain sound wave modes in the gravitational quasinormal

spectra by requiring that a specific combination of the master field and its derivative

vanishes at infinity [57, 61, 62].

1.2 The present work

1.2.1 General procedure

In this work the definition of QNM given by Núñez and Starinets [58] is applied to compute

the quasinormal frequencies associated to electromagnetic and gravitational perturbations

of (3 + 1)-dimensional plane-symmetric AdS black holes. The overall procedure is similar

to that of ref. [60] and consists of the following steps:

(1) Initially the translation invariance of the static plane-symmetric AdS spacetimes is

used to Fourier transform the fluctuation fields with respect to time and to the two

Cartesian coordinates (x, y) of the plane.

(2) With the spatial wave vector chosen to be in the y-direction, both the electromagnetic

and the gravitational perturbation fields are separated into two sets according to

their behavior under the transformation x → −x: odd (axial, or transverse), and

even (polar, or longitudinal) perturbations.

(3) Each sector of perturbation fields is governed by a set of linearized differential equa-

tions. In all of the cases studied here, the complete set of perturbation equations can

be decoupled in order to obtain a unique second-order differential equation, which is

the fundamental equation of that perturbation sector. The fundamental equations are

written in terms of gauge-invariant combinations of the perturbation fields, extend-

ing the original definitions of Kovtun-Starinets variables [60] to (3 + 1)-dimensional

spacetimes.

(4) Then, the standard AdS/CFT prescription of ref. [37] is applied to express the real-

time R-symmetry current and stress-energy tensor correlators in terms of quantities

which represent the asymptotic behavior of perturbations near the AdS-space bound-

ary. Such a procedure shows that the imposition of Dirichlet boundary conditions

on Kovtun-Starinets variables at infinity leads to the poles of the CFT correlation

functions, and therefore, according to the Núñez-Starinets definition of QNM, to the

quasinormal spectra of the plane-symmetric AdS black holes.

(5) With well defined boundary conditions and a set of decoupled fundamental equations,

the hydrodynamical limit of the QNM spectra is then analyzed. This limit is reached

for perturbation modes in which the frequency and the wavenumber are much smaller

than the Hawking temperature of the black hole.
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(6) The last step is numerically compute the electromagnetic and gravitational quasinor-

mal dispersion relations for different blackhole parameters. For such a purpose, the

Horowitz-Hubeny method [31], which reduces the problem of finding QNM frequen-

cies to that of obtaining the roots of infinite polynomial equations, is used.

1.2.2 Main results

Among the new results found in the present work, it is worth mentioning the following ones.

• First, the derivation of the electromagnetic diffusion mode and the gravitational

sound wave mode is performed by means of a traditional QNM calculation. These

modes were earlier obtained by Herzog [63, 64], who utilized the AdS/CFT prescrip-

tion [37] to directly compute the hydrodynamic limit of the CFT R-symmetry current

and stress-energy tensor correlators.

• Second, it is found that the procedure of imposing Dirichlet boundary conditions on

the gauge-invariant KS variables breaks the isospectrality between the axial and polar

electromagnetic QNM, that follows from RWZ variables. As a result, the polar elec-

tromagnetic quasinormal modes are totally new, since the KS variable with Dirichlet

boundary condition yields a different spectrum when compared to the RWZ variable

with the same kind of boundary conditions. Regarding to the electromagnetic axial

perturbations, the dispersion relations found here enlarge previous results of ref. [53].

• Third, it is found in addition that the complete spectra of electromagnetic QNM

present a tower of purely damped modes which tend to Matsubara frequencies char-

acteristic to bosonic systems in the long-wavelength regime. However, these quasi-

normal modes do not exist for all wavenumbers. In fact, there is a saturation value for

the wavenumber above which the electromagnetic purely damped modes disappear.

• Fourth, another result to be mentioned is the difference between the spectrum of

the gravitational polar perturbations, computed by using the KS variable, and that

obtained using the RWZ master variable [54]. The differences are specially signifi-

cant when the fluctuation wavenumber is of the same order of the magnitude of the

blackhole temperature.

• And last but not least, the dispersion relations calculated here complete the previous

results for axial gravitational QNM of (3+1)-dimensional plane-symmetric AdS black

holes [53, 54].

1.2.3 Structure of the paper

The layout of the present article is as follows. Section 2 contains a brief summary of the

relation between the plane-symmetric AdS4 black holes and the eleven-dimensional super-

gravity solution associated with a stack of N M2-branes. In the sequence a detailed study

of the electromagnetic quasinormal modes is performed (section 3): The basic equations

are obtained in section 3.1 and the connection between the blackhole perturbations and the
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CFT R-symmetry currents is explored in section 3.2; the hydrodynamic modes of the elec-

tromagnetic perturbations are studied in section 3.4, and the general dispersion relations

of electromagnetic QNM are reported in section 3.5. The gravitational quasinormal modes

are studied in section 4: The basic equations are obtained in section 4.1; 4.2 is devoted

to investigate the relation between the gravitational QNM and the stress-energy tensor

correlators in the holographic CFT; the hydrodynamic modes of the gravitational pertur-

bations are studied in section 4.4, and the numerical results for the dispersion relations of

the remaining gravitational QNM are presented in section 4.5. The article is completed, in

section 5, with the analysis and interpretation of the main results.

1.3 Notation and conventions

Natural units are going to be used throughout this paper, i.e., the speed of light c, Boltz-

mann constant kB , and Planck constant ~ are all set to unity, c = kB = ~ = 1. Regarding to

notation, capital Latin indices M, N, . . . vary over the coordinates of the whole AdS space-

time, while Greek indices µ, ν, . . . label different coordinates at the boundary, and small

Latin indices i, j, . . . vary only over the spacelike coordinates at the boundary. The conven-

tion for the metric signature and for all the definitions of curvature tensors follow ref. [65].

2. M2-branes and the plane-symmetric black holes

2.1 The background spacetime

Since the QNM definition of Núñez-Starinets [58], that is adopted in this work, makes

heavy use of the relation between AdS black holes and conformal field theories at finite

temperature, it becomes important to review here how the plane-symmetric AdS4 black

holes arise in the context of the AdS/CFT conjecture.2

A fundamental role in the AdS/CFT correspondence3 is played by extended two-

dimensional objects known as M2-branes [68]. The world-volume theory of N M2-branes

is a (2 + 1)-dimensional non-Abelian Yang-Mills theory which presents N = 8 supersym-

metries in addition to a SU(N) gauge group. The coupling constant of the theory flows

to strong coupling in the infrared limit, and it is believed that the flow is to an infrared-

stable fixed point that describes a superconformal field theory [69]. This CFT also has an

emerging R-charge symmetry which is expanded to SO(8).

From the supergravity point of view, a stack of N M2-branes is described by a

nonextremal solution to the supergravity equations of motion, characterized by the met-

ric [63, 70, 71]

ds2 = H−2/3(r̃)
[
−h(r̃)dt2 + dx2 + dy2

]
+ H1/3(r̃)

[
h−1(r̃)dr̃ 2 + r̃ 2dΩ2

7

]
, (2.1)

where

H(r̃) = 1 +

(
R

r̃

)6

and h(r̃) = 1 −
(

r̃0

r̃

)6

, (2.2)

2The brief summary presented in this section is based on material found in refs. [63, 66, 67].
3The interest here is the AdS4/CFT3 correspondence.
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and by a four-form field whose dual Hodge is given by

⋆F4 = F7 = 6R6Vol(S7)ε, (2.3)

where ε stands for the Levi-Civita tensor on S7. According to the AdS/CFT correspon-

dence [1 – 3], the (2 + 1)-dimensional N = 8 CFT is dual to M-theory on the background

spacetime (2.1). Furthermore, the quantization condition on the F4 flux connects the

parameter R to the number of branes N [72]:

R9π5 = N3/2κ2
11

√
2, (2.4)

where κ11 is the gravitational coupling strength in (10 + 1)-dimensional supergravity.

In the large N limit (N ≫ 1), one can consider only the near-horizon region (r̃ ≪ R)

of the spacetime (2.1). Function H(r̃) then reduces to H(r̃) = R6/r̃ 6. Moreover, defining

a new radial coordinate by r = r̃ 2/2R, metric (2.1) becomes

ds2 =
4r2

R2

[
−h(r)dt2 + dx2 + dy2

]
+

R2

4r2

dr2

h(r)
+ R2dΩ2

7. (2.5)

The AdS part of the metric (2.5), associated to the coordinates {t, x, y, r}, is identical

to the solution of Einstein equations with negative cosmological term corresponding to a

(3 + 1)-dimensional plane-symmetric AdS black hole [73 – 76]:

ds2 = −f(r)dt2 + f(r)−1dr2 +
r2

L2
(dx2 + dy2), (2.6)

where the horizon function f(r) is given by

f(r) =
( r

L

)2
h(r) =

( r

L

)2
(

1 − r3
0

r3

)
, (2.7)

and the seven-sphere radius R has been rewritten as R = 2L, with L now representing

the AdS radius of the spacetime (2.6). Parameters r0 and L are related to the blackhole

Hawking temperature T by

T =
3

4π

r0

L2
. (2.8)

2.2 Normalization of the field action

The full theory is the eleven-dimensional supergravity on AdS4 × S7, and the existence of

a compact seven-sphere enables one to consistently reduce the theory to Einstein-Maxwell

theory on AdS4 [67, 77, 78]. The main objective in summarizing such a procedure here is

to make explicit the dependence of the action for the fields in the AdS4 spacetime on the

number of colours N , which is one of the parameters characterizing the holographic CFT.

Upon Kaluza-Klein dimensional reduction, the Maxwell gauge field AM arises from a

combination of metric and F4 form perturbations in the eleven-dimensional supergravity.

This field corresponds to a U(1) subgroup of the SO(8) symmetry group of the com-

plete spacetime (2.1). The mechanism of dimensional reduction also furnishes the (3 + 1)-

dimensional Einstein-Maxwell action with a negative cosmological constant Λ = −3/L2:

S =
1

2κ2
4

∫
d4x

√−g

(
R +

6

L2
− L2FMNF MN

)
, (2.9)

– 7 –
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where R denotes the Ricci scalar and FMN is the electromagnetic strength tensor, and for

the purposes of the present analysis the electromagnetic Lagrangian Lem ∼ FMNF MN is

considered as a perturbation on the gravitational Lagrangian Lgr ∼ R+6/L2. It is assumed

that the gravitational coupling constants in four and eleven dimensions are related by means

of the seven-sphere volume [67],

1

2κ2
4

=
R7Vol(S7)

2κ2
11

. (2.10)

Then, considering that the volume of a unitary seven-sphere is Vol(S7) = π4/3, and using

the standard normalization (2.4) for κ11, it is found

1

2κ2
4

=

√
2N3/2

24πL2
. (2.11)

Action (2.9) with the gravitational constant κ4 given in terms of the number of colours N

and of the anti-de Sitter radius L is the desired result, which is needed for the development

of the present work.

3. Electromagnetic quasinormal modes

3.1 Perturbation equations

In the AdS/CFT context, the electromagnetic field in the AdS bulk couples to the CFT

R-symmetry currents at the spacetime boundary. Hence, in order to construct the current-

current two-point correlation functions in the CFT, it is necessary to consider fluctuations

of the gauge field AM . Such a field is implicitly defined by

FMN = ∂MAN − ∂NAM , (3.1)

with FMN satisfying equations of motion derived from the action (2.9). Therefore, consider-

ing the electromagnetic field as a perturbation on the background spacetime of metric (2.6),

the resulting equations of motion for AM are the usual Maxwell equations

∂M

(√−ggMAgNBFAB

)
= 0, (3.2)

where gMN stands for the metric components given by (2.6).

When looking for solutions to eqs. (3.2), by taking into account the isometries of the

background metric (2.6), it is convenient to decompose the gauge field in terms of Fourier

transforms as follows

AM(t, x, y, r) =
1

(2π)3

∫
dω dkx dky e−iωt+ikxx+ikyyÃM(ω, kx, ky, r). (3.3)

Furthermore, without loss of generality, in the plane-symmetric background spacetime (2.6)

one may choose the wave three-vector k in the form kµ = (k0, kx, ky) = (−ω, 0, q). This

is carried out through an appropriate rotation in the x − y plane, in such a way that the

Fourier modes of the gauge field propagate along the y direction only. With such a choice,

the electromagnetic perturbations AM can be split into two independent sets according to

their behavior under parity operation, x → −x:

– 8 –
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• Axial (odd, or transverse) perturbations: Ax;

• Polar (even, or longitudinal) perturbations: At, Ay, Ar.

Since these two sets of perturbations are orthogonal sets, they can be studied separately,

as it is done in the following.

3.1.1 Equations for axial perturbations

Axial electromagnetic perturbations are governed by the transverse component of Maxwell

equations (3.2), which gives

f
d2Ax

dr2
+

df

dr

dAx

dr
+

(
ω2r2 − q2L2f

fr2

)
Ax = 0, (3.4)

where, to simplify notation, the tilde was dropped, Ãx → Ax. Moreover, it follows from

eqs. (3.1) and (3.3), together with kµ = (−ω, 0, q), that Ax is proportional to the transverse

component of the electric field: Ex = iωAx. Therefore, being a gauge-invariant quantity,

Ax is also a good candidate as master variable for axial perturbations. In fact, it is possible

to cast eq. (3.4) into a Schrödinger-like form [53]

(
d 2

dr2
∗

+ ω2

)
Ψ(−) = f

(
qL

r

)2

Ψ(−), (3.5)

where Ψ(−)(r) = Ax(r), and the tortoise coordinate r∗ is defined in terms of the radial

coordinate r by
dr

dr∗
= f(r). (3.6)

For the present purposes it is convenient to change coordinates to the inverse radius

u = r0/r, and then, by writing eq. (3.5) in terms of Ex it results

E
′′

x +
h
′

h
E

′

x +
w2 − q2h

h2
Ex = 0, (3.7)

where the primes denote derivation with respect to the variable u, and w and q are respec-

tively the normalized frequency and wavenumber, defined by

w =
3ω

4πT
and q =

3q

4πT
, (3.8)

with T being the Hawking temperature of the black hole, given by eq. (2.8). Function h is

obtained from eqs. (2.2), or from eq. (2.7), and in terms of the variable u = r0/r reads

h ≡ h(u) = 1 − u3 . (3.9)

Quantity Ex shall be the fundamental gauge-invariant variable to be used in the present

analysis of the QNM modes for axial electromagnetic perturbations.
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3.1.2 Equations for polar perturbations

Differently from the axial electromagnetic perturbations, the components of the gauge field

AM corresponding to the set of polar perturbations are not gauge invariant. The gauge

freedom can then be used in order to simplify the relevant equations of motion. In fact, the

invariance of Maxwell equations under the gauge transformation AM → AM + ∂Mλ allows

choosing λ in such a way that one of the components At, Ay, or Ar vanishes. For instance,

it is possible to work in the so-called radial gauge, in which Ar = 0 [63]. In this gauge,

Maxwell equations (3.2) corresponding to the polar perturbations are

ωr2 d

dr
At + qL2f

d

dr
Ay = 0, (3.10)

r2 d2

dr2
At + 2r

d

dr
At −

L2

f

(
qωAy + q2At

)
= 0, (3.11)

f
d2

dr2
Ay +

df

dr

d

dr
Ay +

1

f

(
ωqAt + ω2Ay

)
= 0. (3.12)

Notice that this set of equations does not constitute a linearly independent system, and

any subset composed by two of such equations determines the two remaining unknown

components of the gauge field, At and Ay.

From now on, At or Ay could be adopted as a primary variable and equations (3.10)–

(3.12) could be decoupled in order to find a unique differential equation for one of these

functions. However, to avoid the inconvenience of dealing with gauge dependent quantities,

it is interesting to use the electric field components, which are gauge-invariant quantities.

Even though this choice eliminates gauge-dependent potential fields, a residual ambiguity

is left: from the electric field components Er = dAt/dr and Ey = i(qAt + ωAy), what is

the best choice?

The answer to the last question is not simple and both of the possible answers have

been tried in the literature. For instance, inspired by preceding works studying blackhole

perturbations in asymptotically flat spacetimes [79], Cardoso and Lemos opted for the

radial component Er in studying QNM of Schwarzschild-AdS black holes [38], and plane-

symmetric AdS black holes [53]. Introducing a new variable Ψ(+)(r) = r2Er(r) and using

eqs. (3.10) and (3.11), they were able to reduce the system of equations into a unique

ordinary differential equation of Schrödinger type

(
d 2

dr2
∗

+ ω2

)
Ψ(+) = f

(
qL

r

)2

Ψ(+), (3.13)

which has the same form as the fundamental equation for axial perturbations, eq. (3.5). An

interesting consequence of this fact is that the QNM spectra for both the axial and polar

perturbations, with the same boundary conditions, are identical [38, 53]. As a matter of

fact, an open question left behind in the early works computing electromagnetic QNM of

AdS black holes is the lack of a convincing physical justification for the choice of Dirichlet

boundary conditions at infinity for both the polar and the axial perturbations. Such an

issue will be considered in the sequence of this work.
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As far as one is interested in computing the polar electromagnetic quasinormal frequen-

cies, it will be shown in section 3.2 that Ey is more appropriate as a fundamental variable

than Er. This was the choice made, for instance, by Kovtun and Starinets in studying

QNM of black branes in (4 + 1)-dimensional spacetimes [60]. Following these authors, in

the present work Ey is adopted as the fundamental variable to be used to determine the

QNM spectrum of polar electromagnetic perturbations. Having made this choice, one then

writes equations in terms of the independent variable u = r0/r. With this, eqs. (3.10)

and (3.11) written for Ey lead to

E
′′

y +
w2h

′

h (w2 − q2h)
E

′

y +

(
w2 − q2h

)

h2
Ey = 0, (3.14)

where w and q are respectively the normalized frequency and wavenumber, defined by

eqs. (3.8), and h is given by eq. (3.9).

According to the Núñez-Starinets QNM definition [58], once one has found the funda-

mental perturbation equations for a field in the AdS spacetime, the next step is establishing

explicit relations between the perturbation variables and the corresponding retarded Green

functions in the holographic CFT. It is exactly from these relations that will emerge the

boundary conditions to be imposed on the perturbation fields at infinity, viz, the conditions

that lead to the singularities of the two-point correlation functions in the boundary field

theory, and consequently to the quasinormal frequencies of the fluctuation modes. Such a

task is performed in what follows.

3.2 R-current correlation functions

In the case of electromagnetic perturbations, the AdS/CFT correspondence [1 – 3] tells that,

in the strong coupling, large N limit, the information on the thermal correlation functions of

the R-symmetry currents are encoded into the electric field components Ej (j = x, y), which

are solutions to the differential equations (3.7) and (3.14), respectively. It can be shown

that, close to the horizon (u ≈ 1), such functions are given approximately by Ej = h±iw/3,

where the negative (positive) exponent corresponds to ingoing (outgoing) waves. Moreover,

depending on the sign of the exponent, the boundary values of the perturbation functions

act as sources of retarded or advanced Green functions in the dual CFT. To compute the

retarded two-point functions, one has to opt for the negative exponent. It is also necessary

to know the asymptotic form of the perturbation functions close to the infinite boundary

(u ≈ 0). A simple analysis shows that the solutions of equations (3.7) and (3.14) which

satisfy incoming-wave condition at horizon present the following behavior around u = 0:

Ex = A(x)(w, q) + · · · + B(x)(w, q)u + · · · , (3.15)

Ey = A(y)(w, q) + · · · + B(y)(w, q)u + · · · , (3.16)

where ellipses denote higher powers of u for each one of the independent solutions. Symbols

A(j)(w, q) and B(j)(w, q), introduced in the above equations, stand for the connection

coefficients associated to the corresponding differential equations for Ex and Ey.
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To proceed further and calculate the correlation functions, the electromagnetic action

at the boundary needs to be determined. It is usual to split the action as SEM = Shorizon +

Sboundary. Using the equations of motion and the preceding definitions it follows

Sboundary =
χ

2
lim
u→0

∫
dwdq

(2π)2

[
h

w2 − q2h
E

′

y(u, k)Ey(u,−k) +
h

w2
E

′

x(u, k)Ex(u,−k)

]
,

(3.17)

where

χ =
8πTL2

3κ2
4

=
(2N)3/2T

9
(3.18)

is the electric susceptibility of the dual system [63, 67].

In order to apply the Lorentzian AdS/CFT prescription of ref. [37], the asymptotic

solutions (3.15) and (3.16) are used to write the derivatives of the electric field in terms of

the boundary values of the three-vector potential A0
µ(k) = Aµ(u → 0, k). The R-current

correlation functions Cµν are proportional to the coefficients of the terms containing the

product A0
µ(k)A0

ν(−k) that appears in the action (3.17). It is then found:

Ctt = χ
q2

(w2 − q2)

B(y)(w, q)

A(y)(w, q)
, Cyy = χ

w2

(w2 − q2)

B(y)(w, q)

A(y)(w, q)
,

Cty = −χ
wq

(w2 − q2)

B(y)(w, q)

A(y)(w, q)
, Cxx = χ

B(x)(w, q)

A(x)(w, q)
.

(3.19)

Moreover, for a (2 + 1)-dimensional CFT at finite temperature, the current-current cor-

relation functions can be written in terms of the transverse and longitudinal self-energies

ΠT (w, q) and ΠL(w, q), respectively (See appendix A for a summary of such relations).

Hence, comparing eqs. (3.19) to eqs. (A.1)–(A.4) of appendix A, one finds

ΠT (w, q) = χ
B(x)(w, q)

A(x)(w, q)
, ΠL(w, q) = χ

B(y)(w, q)

A(y)w, q)
. (3.20)

These results show that the retarded two-point correlation functions are fully determined by

the ratio between the connection coefficients of equations (3.7) and (3.14). Furthermore, the

poles of the thermal correlation functions are given by the zeros of the coefficients A(x)(w, q)

and A(y)(w, q). According to ref. [58], the poles of Cµν define the electromagnetic QNM

frequencies of the black hole localized in the AdS spacetime. Such frequencies are then

obtained by imposing Dirichlet boundary conditions on the electric field components Ex

and Ey at u = 0, with Ex and Ey being functions that satisfy also an incoming-wave

condition at the horizon.

3.3 QNM and the gauge-invariant variables

At this stage one could ask whether imposing Dirichlet conditions at the boundary (u = 0)

on the Regge-Wheeler-Zerilli (RWZ) variables Ψ(±) would produce the same QNM spectra

as the spectra obtained by imposing the same boundary conditions onto the Kovtun-

Starinets (KS) variables Ex,y. For the transverse electromagnetic sector, the answer to

this question is quite easy to find. In fact, variables Ψ(−) and Ex are proportional to each
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other, so that both of the obtained QNM spectra, either using the KS variable or using the

RWZ variable, are identical. In the case of polar electromagnetic perturbations, equations

for the KS variable Ey and for the RWZ variable Ψ(+) do not have the same form and, in

addition, Ey and Ψ(+) are independent variables, so that the answer is not immediate. In

fact, as it is shown below (see sections 3.4 and 3.5), the QNM spectrum obtained from Ey

is different from the QNM spectrum obtained from Ψ(+).

3.4 Dispersion relations for the hydrodynamic QNM

The hydrodynamic limit of perturbations corresponds to the small frequency (w ≪ 1) and

small wavenumber (q ≪ 1) region of the spectrum of the respective Fourier modes. In

general, the quasinormal modes can be classified according the behavior of the dispersion

relations in the hydrodynamic limit, and in this respect there are two classes. There is a

set of QNM for which the frequency w(q) vanishes when q → 0. Such modes are named

here hydrodynamic quasinormal modes. But there is another kind of QNM for which the

corresponding frequency in the long-wavelength limit is nonzero. To distinguish these two

kind of modes from each other, the modes belonging to the later kind are denominated non-

hydrodynamic quasinormal modes. In this section, the dispersion relations of the electro-

magnetic hydrodynamic QNM are studied by means of analytical and numerical methods.

The electromagnetic non-hydrodynamic QNM shall be object of study in the next section.

From the CFT point of view, it is expected that at least one of the electromagnetic

QNM should show the typical behavior of a diffusion mode in the hydrodynamic limit.

Trying to find such a mode, one then looks for solutions to eqs. (3.7) and (3.14) in the

form of power series in w and q, under the assumption w ∼ q. Written in terms of the

variables Fj = hiw/3Ej (for j = x, y), which are more appropriate for the present analysis,

perturbation equations (3.7) and (3.14) may be cast as

F
′′

j +
u2

h
(2iw − 3aj)F

′

j +
1

h2

[
iw(2u + u4 − 3aju

4) + w2(1 − u4) − q2h
]
Fj = 0, (3.21)

where ax = 1 and ay = w2/(w2 − q2h). After relabelling parameters as w → λw and

q → λq with λ ≪ 1, it is assumed that solutions of eqs. (3.21) can be expanded in the form

Fj(u) = F 0
j (u) + λF 1

j (u) + λ2F 2
j (u) + · · · , (3.22)

where the coefficients Fα
j (u), with α = 0, 1, 2, . . . , represent arbitrary functions of variable

u, and which are also homogeneous functions of degree α on w and q.

The boundary condition of being ingoing waves at the horizon imposed on Ej , when

translated to the new functions Fj , implies their dominant terms in expansion (3.22) must

assume constant values close the horizon (u ≈ 1). Then, in terms of the expansion (3.22)

one has the following conditions

F 0
j (1) = constant, F 1

j (1) = F 2
j (1) = · · · = 0. (3.23)

It is now possible to solve eqs. (3.21) order by order and, after imposing the boundary

conditions given in eqs. (3.23), the following expansions are found:

Ex = Cxh−iw/3

[
1 − iw

√
3

3

(
π

3
− arctan

1 + 2u√
3

)
+

iw

2
ln

1 + u + u2

3
+ O(w2)

]
, (3.24)
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Figure 1: The dispersion relation for the only electromagnetic hydrodynamic QNM (solid line),

which is purely damped, w = −iwI , and corresponds to a polar perturbation. The dotted line

is the diffusion mode wI = q2, which approaches the quasinormal frequency in the hydrodynamic

limit w, q ≪ 1.

Ey =Cyh
−iw/3

[
1+

iq2

w
(1−u)−iw

√
3

3

(
π

3
−arctan

1+2u√
3

)
+

iw

2
ln

1+u+u2

3
+O(w2)

]
, (3.25)

where Cx and Cy are arbitrary normalization constants. One finds from eq. (3.24) no

solution satisfying the Dirichlet condition at the AdS spacetime boundary, Ex(0) = 0, and

which is at the same time compatible with the hydrodynamic approximation w, q ≪ 1. This

means there is no axial electromagnetic hydrodynamic QNM, and no R-charge diffusion

in the transverse direction to the spatial wave vector, as expected from the CFT point of

view. On the other hand, the condition Ey(0) = 0 and eq. (3.25) lead to4

w = −iq2 =⇒ ω = − 3i

4πT
q2, (3.26)

from where one can read the diffusion coefficient D = 3/4πT . It is worth noticing that this

diffusion mode is not found if one uses the RWZ master variable Ψ(+) instead of Ey.

As seen above, the hydrodynamic limit of perturbation equations comprises a very

special interval in the space of parameters w and q. Besides the physical relevance of this

regime, it corresponds to the very rare situations where analytical expressions can be found

for the quasinormal frequencies. In the great majority of cases, numerical methods have

to be employed in order to find the complete dispersion relations w × q. In the sequence,

the Horowitz-Hubeny method [31] is used to compute the dispersion relation w = −iwI(q)

for the electromagnetic hydrodynamic QNM, which in the limit of small wavenumbers

corresponds to the diffusion mode found above. The result is shown in figure 1. One sees

the deviation of the exact dispersion relation curve (solid line) from the hydrodynamic limit

curve wI = q2 (dotted line). Another interesting fact is that the quasinormal frequency

w(q) disappears for q larger than approximately 0.557. This is characteristic to all the

electromagnetic purely damped modes, as analyzed in the next section (see table 1).

4This result was also found through direct calculation of the hydrodynamic limit of correlation functions

by Herzog [63, 64]. The comparison to that result is in fact a test for the analysis performed in section 3.2.
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Figure 2: The dispersion relations for polar (solid lines) and axial (dashed lines) purely damped

electromagnetic QNM. The dotted (lowest) line is the diffusion mode ws = q2, which approaches the

ns = 0 quasinormal frequency in the hydrodynamic limit w, q ≪ 1. The insert shows the behavior

of the dispersion relations for higher quasinormal frequencies.

3.5 Dispersion relations for the non-hydrodynamic QNM

As mentioned earlier, one of the goals of the present analysis is to obtain the electromagnetic

quasinormal modes of plane-symmetric AdS4 spacetimes and to compare the present results

with the results of ref. [53]. As verified in the hydrodynamic limit (section 3.4), the QNM

spectra calculated here may be quite different from the spectra obtained in that work

because of the use of different fundamental variables, and therefore a more careful study

on the dispersion relations of these modes is justified.

3.5.1 Purely damped modes

For small values of q, electromagnetic perturbations of AdS black holes present a special

set of modes which are purely damped. These are not usual QNM since the real part of

the frequencies vanishes eliminating the oscillatory behavior of the perturbations which

is characteristic of QNM. Furthermore, the frequencies w(q) of such modes cannot be,

in general, associated to hydrodynamic poles since most of the purely damped modes

have nonvanishing frequencies in limit as the wavenumber q goes to zero. To distinguish

from the regular QNM, the purely imaginary frequencies of both the axial and the polar

perturbations shall be labelled by a special quantum number, ns, that assumes just integer

values, starting by ns = 0 for the hydrodynamic diffusion mode. As it was shown above,

the axial sector of electromagnetic perturbations does not present quasinormal modes in

the hydrodynamic limit, so that the set of axial purely damped modes starts at ns = 1.

An interesting property of electromagnetic QNM of AdS black holes in (3 + 1)-di-

mensional spacetimes has been recently discovered by Herzog and collaborators [67]: The

current-current correlators are analytical functions at q = 0, meaning that there are no

quasinormal frequencies for null wavenumber. It can be shown that such a property is

a consequence of the well known duality relation between electric and magnetic fields in

vacuum. In fact, using the invariance of Maxwell equations under the duality operation,
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Polar Axial

ns qlim × 103 wlim (interval) ns qlim × 103 wlim (interval)

(0,1) 557.319 [0.648111, 0.648429] (1,2) 339.330 [2.04771, 2.04811]

(2,3) 162.034 [3.52507, 3.52562] (3,4) 71.8726 [5.01701, 5.01788]

(4,5) 31.0102 [6.51286, 6.51384] (5,6) 13.1892 [8.00994, 8.01169]

(6,7) 5.55917 [9.50785, 9.51033] (7,8) 2.32839 [11.0057, 11.0100]

(8,9) 0.970660 [12.5041, 12.5097] (9,10) 0.403180 [14.0009, 14.0114]

Table 1: Approximate limiting values of frequencies w = −iwlim and wavenumbers qlim for purely

damped electromagnetic modes. The brackets indicate that the actual limiting values lie between

the two indicated endpoints in each case.

electric field ↔ magnetic field, and the invariance of the correlation functions under rota-

tions in the case of null wavenumber (zero momentum), it was shown that the transverse

and longitudinal self-energies, ΠT (w, 0) and ΠL(w, 0), are well behaved functions of the

frequency for all values of w.

On the other hand, as verified through the numerical results for purely damped modes,

there are quasinormal frequencies even for wavenumbers very close to zero. In fact, as shown

in figure 2, the small wavenumber limit (q = ǫ, with ǫ very small but non-zero5) of the corre-

sponding purely imaginary quasinormal frequencies, w = −iws, is given approximately by

ws =
3

2
ns =⇒ ωs = ωns ≡ 2πTns, (3.27)

where ωns are the Matsubara frequencies of a generic quantum bosonic system. Moreover,

as it is also seen from figure 2, the hydrodynamic pole ns = 0 is similar to other purely

damped modes. As a matter of fact, the only property that distinguishes a particular

purely damped mode from another is the behavior of these modes around q = 0: The only

QNM satisfying the condition limq→0 w(q) = 0 is the hydrodynamic mode.

At the opposite side of the quasinormal spectrum, i.e., for larger values of q, there are

saturation points at a maximum wavenumber value, qlim, beyond which the specific mode

disappears (See, however, figures 4 and 5). This seems to happen for everyone of the modes,

with qlim decreasing for higher overtones (cf. figure 2). The curves representing dispersion

relations associated to two different but contiguous modes meet each other exactly at the

saturation point, i.e., the two dispersion relation curves coincide at that point. The axial

modes group in pairs according to the relation ns = {(1, 2), (3, 4), (5, 6), . . .}, while the

polar modes are paired as ns = {(0, 1), (2, 3), (4, 5), . . .}. The approximate limiting values

wlim and qlim for ns = 0, 1, 2, . . . , 10 are shown in table 1.

The existence of a meeting point between two contiguous dispersion relation curves

suggests that for the special wavenumber values q = qlim the corresponding quasinormal

frequencies w = −iwlim represent double poles of the CFT current-current correlation

functions. A strong support to such a conclusion comes from the behavior of the connection

coefficients A(j)(w, q) as a function of w = wR − iwI for small values of q and wR = 0. In

5In this specific case, the time of computation spent by the numerical code based on the Horowitz-Hubeny

method [31] written to find the quasinormal frequencies becomes very large as ǫ approaches zero.
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Figure 3: The connection coefficient A(x)(w, q) for wR = 0, wI = (0, 9) and q = qlim ≃ 0.0132.

The points represent the ns = 1, 2, .., 6 purely imaginary quasinormal frequencies associated to the

axial electromagnetic perturbations. Note the coincidence of the points corresponding to ns = 5

and ns = 6, indicating a possible doubleness of the related quasinormal frequency.

figure 3 it is shown the profile of A(x)(w, q) for q = qlim ≃ 0.0132 and 0 < wI < 9. For

this wavenumber, there are six purely imaginary quasinormal frequencies encompassing the

ns = 1 to ns = 6 axial QNM, which by definition are the points where A(x)(w, q) = 0.

In particular, for ns = 5 and ns = 6, the zeros of A(x)(w, q) coincide, indicating that the

corresponding quasinormal frequencies are identical (see also figure 2).

The multiplicity of specific quasinormal frequencies as poles of the correlation functions

may also be verified through the derivatives of A(j)(w, q) with respect to w. This was done

numerically, by taking fixed values of q and letting q → qlim. It was found that the first

derivative of A(j)(w, q) in relation to w vanishes when w = −iwlim and q = qlim, but

it is not zero for other values of the wavenumber. This result proves that w = −iwlim

corresponds to, at least, a double zero of A(j)(w, q), and consequently, to a double pole of

the corresponding current-current correlation functions.

3.5.2 Ordinary quasinormal modes

The electromagnetic perturbations of AdS black holes present also a family of regular

(ordinary) quasinormal modes whose frequencies have nonzero real and imaginary parts.

The numerical results for the quasinormal frequencies of the first five regular modes are

shown respectively in figures 4 and 5 for axial and polar fluctuations.

The form of the dispersion relations wR(q) and wI(q) indicates a connection between

the electromagnetic ordinary QNM and the family of purely damped modes discussed in the

last section. As shown in figures 4 and 5, each regular quasinormal frequency only appears

for q larger than a minimum wavenumber value, which (to a good approximation) coincides

with the limiting value of the corresponding pair of purely damped modes, qlim. That is to

say, all the dispersion relations, w(q), for the ordinary QNM begin at the points (wlim, qlim),
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Figure 4: The real (left) and imaginary (right) parts of the frequencies w = 3ω/4πT for the first

five ordinary axial electromagnetic modes as a function of the normalized wavenumber q = 3q/4πT .

The quantum number n arranges the regular polar QNM in increasing order of values of wI . In the

right it is also shown the frequencies ws = 3ωs/4πT associated to the axial electromagnetic purely

damped QNM.
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Figure 5: The real (left) and imaginary (right) parts of the frequencies w = 3ω/4πT for the first

five ordinary polar electromagnetic modes as a function of the normalized wavenumber q = 3q/4πT .

As for the axial modes, the quantum number n arranges the regular QNM from lower to higher

values of wI . In the right it is also shown the frequencies ws = 3ωs/4πT associated to the polar

electromagnetic purely damped QNM.

with the real parts starting from zero value, wR(q → q+
lim) = 0, while the imaginary parts

start at wI(q → q+
lim) = wlim. For higher wavenumber values, the ordinary electromagnetic

modes show a sequence of quasinormal frequencies whose imaginary parts grow with the

principal quantum number n. In this respect, figures 4 and 5 show a similar behavior for

the real parts of the quasinormal electromagnetic frequencies.

The quasinormal frequencies found here show that AdS black holes are not good oscil-

lators. As it is well known, an interesting way of measuring the quality of an oscillator is by

means of its quality factor Q = wR/2wI . In general, in the region of small wavenumbers,

the electromagnetic QNM have very small quality factors, Q ≪ 1. For instance, taking

q = 0.557319 and considering the fundamental polar mode one obtains Q = 7.24 × 10−5,

a quality factor typical to highly damped oscillatory systems. On the other hand, quality

factors of the order of unity are found for larger wavenumber values, such as Q = 1 for q
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Figure 6: Graphs of the dispersion relations of the first five regular polar electromagnetic QNM

for large values of q. The figure on the left hand side shows the real part of the frequency, wR,

while the graph on the right hand side is for the imaginary part, wI .

around 1.11, and Q = 85.9 for q = 40.

From the holographic field theory point of view, the real part of the frequencies may be

interpreted as quasiparticle excitation energies in the dual plasma defined at the conformal

boundary of the AdS spacetime. However, such an interpretation only makes sense for

excitations, or quasinormal modes, with large quality factors. In fact, according to Heisen-

berg uncertainty principle, the uncertainty in the energy of a quasiparticle is of the order

of ωI (in units of ~). Hence, quality factors smaller than unity imply in energy uncertain-

ties larger than the energies of the quasiparticles themselves, making the interpretation of

energy excitations as quasiparticles meaningless.

In the Q ≫ 1 regime, where the quasiparticle interpretation is feasible, figure 6 shows

that the dispersion relations of the ordinary electromagnetic QNM frequencies have real

parts approaching straight lines of the form wR = q + bn, where bn depends only on the

specific mode n. This means the functions ωR(q) approach the usual energy-momentum

relation associated to a zero rest mass particle, ωR = q, as T → 0. Furthermore, the

characteristic damping time (τ = 1/ωI) of the electromagnetic fluctuations diverges in the

limit q → ∞, i.e., the functions ωI(q) tend to zero for large wavenumbers. All of the

above results are consistent with the expected properties of poles of correlation functions

in quantum field theories at zero temperature [67].

4. Gravitational quasinormal modes

Even though gravitational perturbations of plane-symmetric black holes in (3 + 1)-

dimensional AdS spacetimes have been analyzed in some extent [63, 64, 53 – 55], the quasi-

normal-mode dispersion relations for the KS variables were not found yet, and hence the

comparison with the spectra obtained by using the RWZ gauge-invariant variables was not

performed. This is done next.

– 19 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
0

4.1 Fundamental equations for gravitational fluctuations

As usual, gravitational perturbations are described here in terms of linear metric fluctua-

tions, which means the metric for the perturbed spacetime is written as gMN = g0
MN

+hMN ,

where hMN is considered as a perturbation in the background metric g0
MN , given by eq. (2.6).

Among the variety of possible gauge choices in studying metric perturbations, an interest-

ing choice is the so-called radial gauge, in which the coordinate system is chosen in such

a way that hrt = hrx = hry = hrr = 0. Since one of the aims here is to investigate the

relation among the perturbations of plane-symmetric AdS4 black holes and the correlation

functions in the dual CFT, it is convenient to use the radial gauge formalism to study the

metric fluctuations. A brief description of this formalism is given in the following.

As it was done in the previous section when studying the electromagnetic perturba-

tions, the isometries of spacetime (2.6) allow Fourier transforming coordinates t, x and y,

and writing metric fluctuations hMN as

hMN (t, x, y, r) =
1

(2π)3

∫
dω dkx dky e−iωt+ikxx+ikyyh̃MN(ω, kx, ky, r). (4.1)

Again the wave three-vector may be chosen as kµ = (−ω, 0, q), and hence metric per-

turbations can be split into two disjoint sets. Namely, the axial (transverse) sector of

gravitational perturbations is characterized by the quantities htx and hyx, and the polar

(longitudinal) sector of perturbations is composed by htt, hxx, hyy, and hty.

4.1.1 Axial perturbations in the radial gauge

Now one needs to find evolution equations for the axial (transverse) gravitational pertur-

bations in the radial gauge, that are composed by the metric fluctuations htx and hyx. The

task is carried out following the usual procedure of the theory of linear perturbations. The

linearized Einstein equations corresponding to the axial sector of gravitational perturba-

tions yield a set of three coupled differential equations for htx and hyx [63]. Of course, such

equations are not independent from each other, and one of them may be eliminated as a

combination of the other two. A resulting system of linearly independent equations (after

Fourier transforming them) which is interesting for the present study is the following:

H
′

tx +
qh

w
H

′

yx = 0, (4.2)

H
′′

tx − 2

u
H

′

tx − q

h
(wHyx + qHtx) = 0, (4.3)

where Htx and Hyx are defined by

Htx =
L2

r2
htx, Hyx =

L2

r2
hyx. (4.4)

As in the case of electromagnetic perturbations, a mandatory condition that a

candidate for fundamental variable must satisfy is being gauge invariant, which for metric

perturbations means the candidate has to be invariant under infinitesimal coordinate

transformations. Inspired once again in the work by Kovtun and Starinets [60], among
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the different combinations of axial functions Htx and Hyx which furnish gauge-invariant

quantities, one takes

Z1 = i (qHtx + ωHyx) (4.5)

as the fundamental gauge-invariant function of the axial gravitational perturbations.

Decoupling the system of differential equations (4.2) and (4.3) in terms of the funda-

mental variable Z1, it results the solely second-order differential equation

Z
′′

1 − 2(w2 − q2h)h − uh
′

w2

uh(w2 − q2h)
Z

′

1 +
w2 − q2h

h2
Z1 = 0. (4.6)

Solutions to this equation satisfying the QNM boundary conditions are studied below.

4.1.2 Polar perturbations in the radial gauge

The polar (longitudinal) sector of gravitational perturbations in the radial gauge is de-

scribed by metric fluctuations htt, hxx, hyy and hty. These components of the metric

perturbation tensor are used to define new quantities

Htt =
1

f
htt, Hxx =

L2

r2
hxx, Hyy =

L2

r2
hyy, Hty =

L2

r2
hty, (4.7)

which are more appropriate to deal with during calculations to obtain perturbation

equations. Hence, the polar components of linearized Einstein equations furnish a set of

seven coupled equations for the variables defined in eqs. (4.7). Only four of such a set

are independent equations and, among the possible choices, the more interesting for the

present work are

H
′

ty =
2uwq

b(u)
(Hxx − Htt) +

ua(u)

2qhb(u)
(wHxx + wHyy + 2qHty) −

4wh

qb(u)
H

′

tt, (4.8)

H
′

xx =
wua(u)

2q2h2b(u)
(wHxx + wHyy + 2qHty) −

c(u)

q2b(u)
H

′

tt +
2uw2

hb(u)
Hxx +

ua(u)

2hb(u)
Htt, (4.9)

H ′
yy =

2u

hb(u)

[
w2Hxx + w2Hyy + q2h (Htt − Hxx) + 2qwHty

]
+

(
4h

b(u)
+

c(u)

q2b(u)

)
H

′

tt

− u

2hb(u)

[
4w2Hxx + c(u)Htt

]
− wuc(u)

2q2h2b(u)
(wHxx + wHyy + 2qHty) , (4.10)

H
′′

tt =
2w2

hb(u)
(Hxx + Hyy) +

2q

hb(u)
(2wHty + qhHtt) +

(2 + u3)

2uhb(u)

[
q2Hxx + (8 + u3)H

′

tt

]
,

(4.11)

where, as above, the primes denote derivatives with respect to the variable u = r0/r, and

coefficients a(u) = 3u4 −12u−4w2, b(u) = h+3, and c(u) = 4w2 −q2b(u) were introduced

to simplify notation.

Finally, a gauge-invariant function Z2 is built as a particular combination of the metric

perturbations

Z2 = 4ωqHty + 2ω2Hyy +
[
q2(3 − h) − 2ω2

]
Hxx + 2q2hHtt, (4.12)
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for which, uncoupling the equations of motion (4.8)–(4.11), it is found the following second-

order differential equation

Z
′′

2 − 4w2(2 + u3) + q2d(u)

uhc(u)
Z

′

2 +
4w4 + q4hb(u) − q2e(u)

h2c(u)
Z2 = 0, (4.13)

where d(u) = 4u3 − 5u6 − 8 and e(u) = 9u4h+ w2(8− 5u3). Equations (4.6) and (4.13) are

the fundamental equations that are going to be used in the next sections to compute the

QNM spectra associated to gravitational perturbations of plane AdS4 black holes.

4.2 Stress-energy tensor correlation functions

For the gravitational perturbations, the AdS/CFT correspondence establishes a relation

among the solutions of eqs. (4.6) and (4.13) and the stress-energy tensor of the dual CFT.

From this relation, the stress-energy tensor correlators can be determined, and in order to

do that the explicit form of the fields in the bulk AdS spacetime has to be known. More

precisely, in order to impose the ingoing-wave condition at the horizon, and to map AdS

to CFT quantities at the boundary of the spacetime, the asymptotic form of the metric

perturbation functions close to the horizon and at the boundary are necessary.

In the horizon neighborhood (u ≈ 1), the gravitational gauge-invariant variables Z1

and Z2 have a similar behavior as the electric field components (see section 3.2), viz, Z1,2 ∼
h±iw/3. As in the electromagnetic case, to compute the retarded Green functions, one has

to choose the solutions corresponding to the negative imaginary power, Z1,2 ∼ h−iw/3. On

the other hand, at the conformal boundary of the AdS spacetime, the metric fluctuations

are such that

Z1 = A(1)(w, q) + · · · + B(1)(w, q)u3 + · · · , (4.14)

Z2 = A(2)(w, q) + · · · + B(2)(w, q)u3 + · · · , (4.15)

where ellipses denote higher powers of u, and quantities A(1)(w, q) and B(1)(w, q), and

A(2)(w, q) and B(2)(w, q) are the connection coefficients related to the differential equa-

tions (4.6) and (4.13), respectively.

For the remaining of this section, as usual, the gravitational perturbations are split

into axial and polar sectors and the analysis of the corresponding actions, coming from

eq. (2.9), are performed separately for both of the perturbation types.

4.2.1 Axial sector

It is well known that in the calculation of two-point correlation functions from the gravi-

tational action only quadratic terms in metric perturbations need to be considered. More-

over, according to the Lorentzian AdS/CFT prescription [37] (see also ref. [80]), in order

to obtain the CFT retarded correlators the relevant terms are the quadratic terms in the

derivatives of Hµν . Hence, collecting all of the contributions coming from the gravitational

part of action (2.9), one gets

S(2) =
P

2

∫
du d3x

1

u2

[
H

′2
tx − hH

′2
yx

]
+ · · · , (4.16)
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where

P =

(
4πT

3

)3 L2

2κ2
4

=
8
√

2

81
π2N3/2T 3 (4.17)

is interpreted as the pressure of the dual plasma [64].

Now expressing functions H
′

tx and H
′

yx in terms of the axial fundamental variable Z1

through eqs. (4.2)–(4.5), substituting the resulting relations into eq. (4.16), and making

use of the fundamental equation (4.6), it is found the following action (at the boundary)

S(2)
boundary =

P

2
lim
u→0

∫
dw dq

(2π)2
h

u2(w2 − q2h)
Z

′

1(u, k)Z1(u,−k) + S(2)
CT , (4.18)

where the contact terms represented by S(2)
CT do not carry derivatives of the metric perturba-

tion functions. In the calculation of the correlation functions, after Fourier transformation,

the contact terms give rise to derivatives of the Dirac delta function. Their removal can be

done through the holographic renormalization, with the inclusion of appropriate counter

terms in the supergravity action [81].

Besides using eq. (4.5), the asymptotic expansion given by eq. (4.14) is used to write

the derivative of the gauge-invariant quantity Z1 in terms of the boundary values of the

perturbation fields H0
µν(k) = Hµν(u → 0, k), and then the AdS/CFT prescription [37] can

be applied to the present case in order to calculate the retarded correlation functions of

the holographic stress-energy tensor T µν . The result is

Gtx,tx = −3P
q2

(w2 − q2)

B(1)(w, q)

A(1)(w, q)
, (4.19)

Gtx,yx = 3P
wq

(w2 − q2)

B(1)(w, q)

A(1)(w, q)
, (4.20)

Gyx,yx = −3P
w2

(w2 − q2)

B(1)(w, q)

A(1)(w, q)
. (4.21)

As it happens for the current-current correlations functions, one can find general ex-

pressions for the two-point thermal functions associated to the stress-energy tensor which

hold for any scale invariant (2 + 1)-dimensional field theory (see appendix A). For fluctu-

ations of the transverse momentum density in the CFT one has the correlators

Gtx,tx =
q2

2 (w2 − q2)
G1(w, q), (4.22)

Gtx,yx = − wq

2 (w2 − q2)
G1(w, q), (4.23)

Gyx,yx =
w2

2 (w2 − q2)
G1(w, q). (4.24)

Therefore, by comparing the general expressions of eqs. (4.22)–(4.24) to the results given

in eqs. (4.19)–(4.21), the following scalar function is found

G1(w, q) = −6P
B(1)(w, q)

A(1)(w, q)
. (4.25)
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It is then seen that Dirichlet condition imposed on the fundamental variable Z1 at the

boundary, Z1(0) = A(1)(w, q) = 0, leads straightforwardly to the poles of the correlation

functions Gtx,tx, Gtx,yx and Gyx,yx. As a consequence of this result, such a requirement also

yields the quasinormal spectrum associated to the axial gravitational perturbation modes

of plane-symmetric black holes.

4.2.2 Polar sector

The procedure to be applied to the polar sector of gravitational perturbations is the same as

for the axial sector. The starting point here is the part of the boundary gravitational action

built with the quadratic terms in the polar metric perturbations, which is given by [64]

S(2)
boundary =

P

2
lim
u→0

∫
d3x

[
1

4

(
2H2

tt − 8H2
ty + HttHxx + HttHyy

)
− 1

4
(Hxx − Hyy)

2

− h

2u2

(
H2

ty + HxxHyy − HttHxx − HttHyy

)′

]
.

(4.26)

By using the relation among polar metric fluctuations and the gauge-invariant variable

Z2, eq. (4.12), and the equations of motion (4.8)–(4.11), the boundary action (4.26) can

be cast into the form

S(2)
boundary =

P

2
lim
u→0

∫
dwdq

(2π)2
h

u2 [4w2 − q2(4 − u3)]2
Z

′

2(u, k)Z2(u,−k) + S(2)
CT , (4.27)

where the contact terms S(2)
CT do not contain derivatives of metric perturbations. One

now uses the asymptotic expansion (4.15) to write the derivative of the gauge-invariant

variable Z2 in terms of boundary values of the polar metric perturbations H0
µν(k). After

substituting the resulting expression into the action (4.27), the appropriate functional

derivatives6 of the action with respect to the independent fields H0
tt(k), H0

ty(k), H0
yy(k)

and H0
xx(k) are performed. Notice, however, that in the case of polar gravitational

perturbations, the use of the AdS/CFT prescription is not direct. In fact, it is first

necessary to identify explicitly how the metric perturbations couple to the stress-energy

tensor at the boundary. As discussed in refs. [82, 83], such a coupling is given by

−1

2

∫
dt d2xhν

µT µ
ν = −1

2

∫
dt d2x

[
H0

ttT
tt + H0

xxT
xx + H0

yyT
yy + 2H0

tyT
ty

]
. (4.28)

Taking this coupling into account, the covariant components of the polar correlation

functions are found

Gµν,αβ = Qµν,αβG2(w, q), (4.29)

where the scalar function G2(w, q) is given by

G2(w, q) = −6P
B(2)(w, q)

A(2)(w, q)
+ contact terms, (4.30)

and tensor Qµν,αβ is given in appendix A (see also [60]). This result shows definitely that

Dirichlet boundary condition imposed on the fundamental variable Z2 at infinity leads to

the poles of the function G2(w, q), and, by definition, to the quasinormal frequencies of

polar gravitational vibration modes.

6Functional derivatives in the sense defined by the Lorentzian AdS/CFT prescription of ref. [37].
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4.3 QNM and the gauge-invariant variables

As in the study of electromagnetic quasinormal modes, a comparison between results found

using RWZ variables with the ones obtained using KS gauge-invariant variables to describe

gravitational perturbations deserves to be made. As in that case, while the axial quasinor-

mal spectrum is independent of the choice of the fundamental variable, polar quasinormal

spectrum strongly depends on it.

A strong evidence that the QNM spectra obtained using either RWZ or KS variables

to describe axial gravitational perturbations are identical comes from the study of the

hydrodynamic limit of such perturbations as performed in ref. [54] and in section 4.4 (see

below). As a matter of fact, even though different methods have been employed in each

case, both of the quasinormal spectra present a typical hydrodynamic shear mode with

diffusion coefficient D = 1/4πT , independently if one uses variable Z(−), or variable Z1.

Furthermore, it can be shown that the explicit relation between RWZ and KS variables is

Z1 =
f

r2
∂r

[
rZ(−)

]
, (4.31)

and at the AdS spacetime boundary, axial fundamental variables Z(−) and Z1 are propor-

tional to each other,

Z1(u)
∣∣
u=0

=
1

L2
Z(−)(u)

∣∣
u=0

, (4.32)

what proves that the two spectra obtained from Z(−) and Z1 are indeed identical to each

other.

The situation in the polar sector is quite diverse from what happens in the axial sector.

As it is shown in the sequence of the present work (see sections 4.4 and 4.5), RWZ and KS

variables with the same boundary conditions generate different quasinormal frequencies.

In particular, it is shown in section 4.4 that the hydrodynamic limit of Z2 contains a sound

wave mode which is not seen in the quasinormal spectrum obtained from Z(+).

4.4 Dispersion relations for the hydrodynamic QNM

For the fluctuations of the stress-energy tensor in the dual field theory, hydrodynamics

predicts a shear mode in the transverse (axial) sector and a sound wave mode in the

longitudinal (polar) sector. As it is going to be shown below, these modes also appear

in the gravitational QNM spectra of the plane black holes as long as one investigates the

regime of small frequencies and wavenumbers, w → 0 and q → 0. Proceeding analogously

to the case of electromagnetic perturbations studied in section 3.4, the following change of

variables is done

Hj(u) = hiw/3Zj(u), j = 1, 2. (4.33)

Functions H1 and H2 are then expanded in power series of w and q. Besides being ap-

proximate solutions to eqs. (4.6) and (4.13) in the hydrodynamic limit, such series must

represent ingoing waves at the horizon, namely, Hj(u)
∣∣
u=1

= constant. These conditions

are fulfilled by the following expansions:

Z1 = C1h
−iw/3

[
1 + i

q2h

3w
+ O(w2)

]
, (4.34)
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Figure 7: The dispersion relation (imaginary part) for the axial gravitational hydrodynamic mode

(solid line), in comparison to the shear mode, q2/3 (dotted line), and to the algebraically special

mode, q4/6 (dashed line).

Z2 = C2h
−iw/3

[
2 − u6 − 4

w2

q2
− 4iwh

3
+ O(w2)

]
, (4.35)

where C1 and C2 are arbitrary normalization constants. Dirichlet conditions at the space-

time boundary, u = 0, are now imposed on both the axial and the polar fundamental

variables, Z1(0) = 0 and Z2(0) = 0. The first variable leads to an axial quasinormal mode

identified to the shear mode with

ω = −iDq2, (4.36)

while the second variable furnishes a dispersion relation characteristic to a sound wave mode

ω = ± 1√
2
q − iDq2

2
, (4.37)

where D is the diffusion coefficient, given by

D =
η

ε + P
=

1

4πT
, (4.38)

with η and ε being respectively the shear coefficient and the energy density of the dual

system.

Among other interesting results that can be found, combining eq. (4.38) to the ther-

modynamic Euler relation P = −ε + Ts ⇒ s = (ε + P )/T , one gets the ratio between the

shear coefficient and the entropy density of the dual plasma,

η

s
=

η T

ε + P
=

1

4π
, (4.39)

or, in conventional units, η/s = ~/4πkB . This ratio is the same for all finite temperature

field theories with a dual gravitational description in the AdS spacetime [84]. It is also

speculated that η/s = 1/4π represents a lower bound –the KSS bound– of such a ratio for

all fluids in nature.

– 26 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
0

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9  10

3ω
R
/4

πT

3q/4πT

hydrodynamic QNM
sound wave mode

ωR=q

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9  10

3ω
I/4

πT

3q/4πT

hydrodynamic QNM
sound wave mode

Figure 8: Real and imaginary parts, respectively, of the dispersion relation w(q) for the hydro-

dynamic longitudinal gravitational mode (solid lines). The dashed lines in both of the figures

correspond to the sound wave mode, given by eq. (4.37), and the dotted curve in the figure on the

left hand side is the relation wR = q.

The complete dispersion relations for the gravitational hydrodynamic QNM are ob-

tained by means of the Horowitz-Hubeny method [31], and, for the sake of simplicity, the

numerical results for the axial and polar sectors are analyzed separately.

(i) Axial modes: The extension of the dispersion relation of the axial hydrodynamic

QNM for large values of q was already done in ref. [54], but for completeness it is

also shown in figure 7. As the normalized wavenumber q reaches values beyond of

the hydrodynamic regime, the magnitude of the QNM frequency w = −iwI increases

faster than the magnitude of the shear mode frequency w = −iq2/3, and for very

large wavenumber values, q ≫ 1, the hydrodynamic QNM frequency approaches the

algebraically special frequency w = −iq4/6.

(ii) Polar modes: In this sector of perturbations, RWZ and KS variables submitted to

the same boundary conditions generate different quasinormal frequencies. As seen

above, the hydrodynamic limit of Z2 presents a sound wave mode which is not present

in the quasinormal spectrum obtained from Z(+). The extended dispersion relations

for the longitudinal hydrodynamic QNM are shown in figure 8. The real part of the

frequency clearly shows the transition from the hydrodynamic regime wR = q/
√

2, at

low wavenumbers, to a regime characterized by collisionless dual plasma in which the

dispersion relation wR(q) approaches the ultra-relativistic relation wR = q. Between

these two extreme regimes, the group velocity, defined by cs = dwR/dq, assumes

values that are higher than the speed of light. The graphs in figure 9 show that

cs > 1 for all wavenumbers larger than q ≃ 1.336, and that the minimum decaying

time (the maximum of wI) corresponds to q ≃ 3.213. Notice, however, that dwR/dq

surpasses the speed of light at wavenumber values lying outside the hydrodynamic

regime and therefore that superluminal group velocity cannot be interpreted as the

sound velocity in the corresponding media.
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Figure 9: The group velocity cs = dwR/dq and the derivative dwI/dq as a function of the normal-

ized wavenumber q for the polar hydrodynamic gravitational mode (solid lines). The dashed line

in the figure on the left is the sound velocity for a (2+1)-dimensional CFT, cs = 1/
√

2, and the

dotted line in the same figure represents the speed of light, c = 1.

4.5 Dispersion relations for the non-hydrodynamic QNM

Conventionally, a non-hydrodynamic QNM is every mode for which the dispersion relation

presents a gap in the limit q → 0. That is to say, the quasinormal frequency w(q) tends to a

nonzero value in the limit where the wavenumber goes to zero. These kind of gravitational

perturbation modes are studied in this section.

As done in the case of electromagnetic perturbations, the QNM obtained by using

RWZ gravitational variables Z(±), obeying Schrödinger-like equations, are compared to the

QNM obtained by using the KS gauge-invariant quantities Z1,2, which lead to the poles of

stress-energy tensor correlators in the N = 8 super-Yang-Mills field theory. In particular,

the results obtained here from Z1,2 are compared to the results of refs. [53, 54].

4.5.1 Purely damped modes

The spectra of gravitational perturbations of plane-symmetric AdS4 black holes do not

present non-hydrodynamic quasinormal frequencies with vanishing real part. In fact, the

only purely damped mode of the gravitational perturbations is the axial hydrodynamic

QNM which was already investigated in the last section.

4.5.2 Ordinary quasinormal modes

As usual, the study of the dispersion relations of regular non-hydrodynamic gravitational

QNM is more conveniently performed by considering axial and polar sectors of such per-

turbations separately.

(i) Axial modes: As shown above, in the case of gravitational axial modes both of the

fundamental variables Z1 and Z(−) yield the same QNM spectrum. Even though

a detailed study of the fundamental non-hydrodynamic QNM (based on the RWZ

master variable) was performed in ref. [54], higher overtones of axial gravitational

QNM were not fully investigated. Hence, the aim here is to complete the analysis by

including such higher overtones. Figure 10 shows the numerical results for the dis-

persion relations of the first five axial quasinormal modes: n = 1,. . . , 5. The general
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Figure 10: The first five quasinormal frequencies of non-hydrodynamic axial gravitational modes,

w = (3ωR/4πT ) − i(3ωI/4πT ), as a function of the normalized wavenumber q = 3q/4πT . The

quantum number n arranges the modes in growing order according to the strength of the imaginary

parts of the frequencies.

forms of the curves are approximately the same for all values of n: At intermediate

values of q, there is a local minimum in the real part of the frequency wR(q), and

for large values of the wavenumber, every dispersion relation wR(q) tends to some

straight line parallel to the ultra-relativistic energy-momentum relation, wR = q.

(ii) Polar modes: Contrary to the axial perturbations, the longitudinal gravitational

fluctuations present different spectra as one takes Z2 or Z(+) as fundamental variable.

The numerical results for these modes, based on the gauge-invariant variable Z2, are

shown in figure 11. Notice that now the real part of the quasinormal frequency wR is

a monotonic increasing function of q, showing neither local maxima nor local minima

which, on contrary, appear in the quasinormal spectrum for the RWZ master variable

Z(+) used in refs. [53, 54]. A comparison between the QNM spectrum found from

the RWZ variable (cf. ref. [54]) and that found from the KS variable used here can

also be done through the data presented in table 2. It is clearly seen the similarity

between the two spectra in the two asymptotic regions of wavenumber values. Both

of the spectra are approximately the same for small values and also for large values

of q. The main differences happen in the regime where the normalized wavenumber q

is of the order of unity, which means that q is of the order of the blackhole Hawking

temperature. Moreover, the real parts of the quasinormal frequencies in both of

the spectra are relatively closer to each other when compared to the corresponding

imaginary parts. This implies that, even though the QNM oscillation frequencies are

essentially the same for both choices of variables, the decaying timescales (τ = 1/ωI)

are significantly smaller for the KS choice.

5. Final comments and conclusion

One of the important issues dealt with in the present work is related to the choice of

appropriate variables in order to determine the QNM spectra of AdS black holes. It
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Figure 11: The first five quasinormal frequencies of non-hydrodynamic polar gravitational modes,

w = (3ωR/4πT ) − i(3ωI/4πT ), as a function of the normalized wavenumber q = 3q/4πT , ordered

as in the case of axial gravitational modes.

Kovtun-Starinets Regge-Wheeler-Zerilli

q wR wI wR wI

0.004 1.84942 2.66385 1.84945 2.66384

0.04 1.84964 2.66379 1.85027 2.66248

0.4 1.87207 2.65770 1.92488 2.52658

1 2.00603 2.62917 2.03016 1.92213

2 2.60256 2.56803 2.30526 1.55218

5 5.57791 2.25854 5.25618 1.27974

10 10.5703 1.94304 10.2839 1.07342

Table 2: Numerical results for the first non-hydrodynamic quasinormal mode associated to the

polar gravitational perturbations. The second and third columns show respectively the values of

real and imaginary parts of the frequencies obtained by using the KS variable Z2, and the last

two columns present the results obtained by using the RWZ variable Z(+), which are also shown in

ref. [54].

is argued that Kovtun-Starinets gauge-invariant quantities, together with incoming-wave

condition at horizon and Dirichlet boundary condition at infinity, should be used in order

to find the correct quasinormal dispersion relations. The resulting spectrum for a given

perturbation is in general different from what is obtained using other kind of variables with

the same boundary conditions.

In the case of electromagnetic perturbations, contrary to what is obtained using the

so-called Regge-Wheeler-Zerilli quantities Ψ(±) where the spectra for both the axial and

the polar modes are the same, Kovtun-Starinets variables present a different spectrum

for each mode type. Also, both of these sectors of electromagnetic perturbations present

purely damped modes whose dispersion relations, in the limit of small wavenumbers, ap-

proach the bosonic Matsubara frequencies ω = −2iπTns. This result can be compared

to the “quasi-Matsubara” frequencies, ω = 2πTns(1 − i), that have been found for zero

wavenumber fluctuations of (4 + 1)-dimensional black branes [58]. The studies show the

emergence of infinite sequences of bosonic Matsubara frequencies for both (3 + 1)- and
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(4 + 1)-dimensional black branes, but the particular behavior of the QNM dispersion rela-

tions at zero wavenumber is quite different in each case. In (3+1) dimensions the real part

of the frequencies is zero for very small wavenumber values, while in (4 + 1) dimensions

real and imaginary parts of the frequencies are both finite at zero wavenumber. Moreover,

as pointed out in section 3.5 and discussed in detail in ref. [67], the invariance of Maxwell

equations under the electric field ↔ magnetic field duality operation in (3+1)-dimensional

spacetimes implies that there are no electromagnetic QNM at zero wavenumber. Such a

duality invariance does not hold in higher dimensional spacetimes, what justifies the dif-

ferent behavior of zero wavenumber electromagnetic QNM found here when compared to

the results of ref. [58].

Other special property of electromagnetic fluctuations deserving to be mentioned here

is the cutoff in the dispersion relations of purely damped QNM at a particular value of

the wavenumber, q = qlim. This cutoff implies in an abrupt change in the behavior of the

fundamental quasinormal mode, but not in the thermalization time τ . For wavenumbers in

the interval 0 < q < qlim, parameter τ is given by the first purely damped mode, τ = 1/ωs,

while for wavenumber values above qlim, the characteristic decaying time are governed by

the fundamental ordinary QNM, τ = 1/ωI . Since the imaginary parts of the frequencies

of these modes are equal for q = qlim, the thermalization time changes continuously for

wavenumbers close to qlim.

The numerical results for the gravitational QNM show that the thermalization time

of axial modes for wavenumbers in the interval 0 < q < 1.935 is determined by the

hydrodynamic mode. This means that, at least in the limit q ≪ 1, where the shear mode

is a good approximation for the axial hydrodynamic QNM, the thermalization time τ is

a linear function of Hawking temperature, τ ≃ 4πT/q2. As in the case of electromagnetic

fluctuations, the transition to the regime where the thermalization time is determined

by the first regular axial QNM is continuous. Such a transition happens for the values

q ≃ 1.935 and wI ≃ 2.296. Also, at this point the thermalization time reaches its minimum

value, τ ≃ 0.104/T . On the other hand, for polar gravitational perturbations the decaying

time τ is always determined by the hydrodynamic QNM which reduces to the sound wave

mode in the small wavenumber limit q ≪ 1.

Finally, the behavior of the group velocity cs shown in figure 9, which is greater than

unity for all q > 1.336, deserves further analysis. First note that apparent superluminal

propagation of this type, which at first sight seems to violate causality, has been found in

other relativistic quantum systems. For instance, Scharnhorst [85] has shown in the case

of Casimir effect that when vacuum fluctuations obey periodic boundary conditions, the

two-loop corrections to the polarization tensor lead to superluminal photon propagation.

Also, it is argued that the physically meaningful propagation velocity and, consequently,

the one that defines the light cones in spacetime, is the front wave speed vwf, which is given

by the limit of the phase speed vph = ω/q when ω → ∞ (see, e.g., ref. [86] for a review).

The graph on the left in figure 9 shows that vph approaches c = 1 at high frequencies, and,

therefore, the oscillations in the super-Yang-Mills plasma do not violate causality.

– 31 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
0

Acknowledgments

We thank conversations with Vitor Cardoso, Marc Casals, and José P. S. Lemos. ASM
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A. Correlators in a (2 + 1)-dimensional CFT

The Lorentz index structure of retarded Green functions of conserved currents and stress-

energy tensor in a D-dimensional relativistic quantum field theory was discussed in details

in ref. [60]. It was shown that the field theory correlators can be expressed in terms of

a set of scalar functions. For the present work, a particularly interesting example is that

of a (2 + 1)-dimensional finite temperature conformal field theory. In this specific case,

with the wave three-vector in the form kµ = (−ω, 0, q), the transverse component of the

current-current correlation functions can be written as

Cx1x1(k) = ΠT (ω, q). (A.1)

The longitudinal components in turn are given by

Ctt(k) =
q2

(ω2 − q2)
ΠL(ω, q), (A.2)

Ctx2(k) = − ωq

(ω2 − q2)
ΠL(ω, q), (A.3)

Cx2x2(k) =
ω2

(ω2 − q2)
ΠL(ω, q), (A.4)

where ΠT (ω, q) and ΠL(ω, q) are two independent scalar functions. All the correlators of

transverse momentum density are expressed in terms of a scalar function G1(ω, q):

Gtx1,tx1(k) =
1

2

q2

(ω2 − q2)
G1(ω, q), (A.5)

Gtx1,x1x2(k) = −1

2

ωq

(ω2 − q2)
G1(ω, q), (A.6)

Gx1x2,x1x2(k) =
1

2

ω2

(ω2 − q2)
G1(ω, q). (A.7)

In a similar way, the correlators of longitudinal momentum density, energy density, and

diagonal stress are determined by another scalar function G2(ω, q),

Gµν,αβ(k) = Qµν,αβ(ω, q)G2(ω, q), (A.8)

where the components of the projector Qµν,αβ are given by:

Qtt,tt =
1

2

q4

(ω2 − q2)2
, Qtt,tx2 = −1

2

ωq3

(ω2 − q2)2
, (A.9)
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Qtt,x1x1 = −1

2

q2

(ω2 − q2)
, Qtt,x2x2 =

1

2

ω2q2

(ω2 − q2)2
, (A.10)

Qx1x1,x1x1 =
1

2
, Qx1x1,tx2 =

1

2

ωq

(ω2 − q2)
, (A.11)

Qx1x1,x2x2 = −1

2

ω2

(ω2 − q2)
, Qx2x2,x2x2 =

1

2

ω4

(ω2 − q2)2
, (A.12)

Qx2x2,tx2 = −1

2

ω3q

(ω2 − q2)2
, Qtx2,tx2 =

1

2

ω2q2

(ω2 − q2)2
. (A.13)
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